

New perspectives of diagnosis and treatment for preeclampsia

子癲前症新觀點:診斷及治療

蘇美慈

成大醫院 婦產部 主治醫師兼任臨床教授

Declaration of Conflict Interest

• I have no commercial disclosure

Outline

- Current
 - Diagnosis and Practice Guidelines of Preeclampsia (ACOG)
 - Pathoetiology: Two-stage sisease
- New perspectives
 - Pathoetiology
 - Decidualization resistance
 - Dysbiosis
 - Environment- PM 2.5, nano-particles, nano-pastic
 - Diagnostic markers
 - Treatment targets

Definition, Clinical Presentations and Managements of Preeclampsia

Definition for preeclampsia

ISSHP 2018

- New onset of hypertension with one or more the following conditions after GA 20 wks
 - Proteinuria
 - Maternal organ dysfunction
 - Renal insufficiency
 - Liver involvement
 - Neurological complications
 - Hematological complications
 - Uteroplacental dysfunction

ACOG 2020

- new onset of hypertension after GA 20 wks
 - Proteinuria
 - Significant end-organ dysfunction
 PLT < 100,000/uL
 - (>1.1 mg/dL
 - Ever enzymes > 2* normal limits
 - Pulmous syledema
 - Visual symptoms (blurred vision)
 - Headache (n∈ ∨ ¬nset)

ACOG Practice Bulletin No. 222; Obstet Gynecol 2020; 135:e237.

Preeclampsia screening and prediction model

- First trimester (11 14 yeks) Fetal Medicine Foundation (FMF triple test)
 - Maternal factors (MF)
 - Mean arterial pressure (m, E)
 Uterine artery pulsatility index (JtA-PI)
 Serum placental growth factor (Plof) or PAPP-A
 - Detection rates of 90% and 75% for the prediction of very early (< GA 32 wks) and preterm preeclampsia, respectively, with a 10% folse-positive rate
- Second to third trimester
 - sFLT1 and placental growth factor (PIGF): a sens of 20% and a speci of 92%
 - sFLT1/ PIGF of 38
 - Diagnosis of PE within 4 weeks: a sens of 66.2% and a spec of 83.1%
 - To rule out the disease within 1 week with a NPV of 99.9%

Practice Guidelines from ACOG and SMFM

(2018 and reaffirmed Oct 2022)

- One high risk factor or two moderate risk factors for PE
 - Low-dose aspirin therapy (\$2 mg/d) should be started between GA 12 and 28 wks (optimally before 16 weeks)
 - Continued daily until delivery
- Any patient with PE or gestational HTN
 - GA \geq 37 wks \rightarrow delivery.
- Patients with PE or gestational HTN with severe features
 - GA \geq 34 wks \rightarrow delivery
 - GA< 34 wks→ consider expectant management

Clinical Risk Factors for Preeclampsia				
Risk level	Risk factors			
High	Autoimmune disease (e.g., systemic lupus erythematosus, antiphospholipid syndrome)			
(1)	Chronic hypertension			
	Diabetes mellitus – type 1 or type 2 History of preeclampsia Multifetal gestation Renal disease			
oforente	Age 35 years or older			
(2)	nily history of preeclampsia (mother or sister)			
	History of low-birth-weight infant, adverse pregnancy outcome, or more than 10 years between pregnancies			
	Obesity (body mass index > 30 kg per m²)			
	Nulliparity			
	+ in vitro conception			

Obstet Gynecol 2018;132:e44-52; JAMA 2021;326:1186-91.

Interventions to reduce Preeclampsia

American College of Cardiology (2020)

and calcium for prophylaxis. Pravastatin, metformin, and exercise are currently being investigated and are showing promise. *Only in

nutritional deficiency in low-middle income countries.

Benefit

- Delivery
- Aspirin
- Calcium *: only in nutritional def. countries

Potential

- Pravastatin
- Metformin
- Exercise

No benefit

- Bed rest, Sodium restriction
- Fish oil, Folic acid, Garlic
- Vit C, D, E

J Am Coll Cardiol. 2020 Oct 6;76(14):1690-1702.

Two-stage placental model of preeclampsia (1991)

Placenta. 1991;12(4):301-308.

Stage 1. Poor placental development

Abnormal trophoblast invasion and spiral artery remodeling

Decidual Tregs, M2 macrophage, DC, uNK cells facilitate spiral arteries remodeling and placental development

Stage 2

- Placenta ischemia
- Maternal vascular disease
 - High levels of sFlt-1 and sEng
 - Endothelial dysfunction
 - Vasoconstriction
 - Immune dysregulation
 - Negatively impact maternal excorpan system and the fetus

Preeclampsia: a two-stage process

- Stage 1: poor placentation
 - Trophoblast invasion, spiral a. remodeling
 - Oxidative stress
 - Proinflammatory cytokines

Stage 2: Placenta ischemia & maternal vascular disease

- Anti-angiogenic factors (SELS-1, sEng)
- Inflaminatory response $(TNF-\alpha, II-1)$

New perspectives of pathoetiology in preeclampsia

Decidualization resistance
Microbiota (gut, uterine, oral)

Decidualization resistance and preeclampsia

Endometrial decidualization

- From secretory mase → early pregnancy
 - (1) Morphological transformation endometrial stromal cells (FSCs)→ decidual stromal cells (DSCs)
 - (2) Biochemical change
 Decidualized hESCs secrete prolactin & insulinlike growth factor binding protein 1 (CFB)-1)
- Driven by progesterone and local cAMF
- Functions
 - Embryonic implantation, placentation, and pregnancy maintenance.
- Deficient decidualization
 - Implantation failures, age-related decline in reproductive capacity
 - Preeclampsia, miscarriage, premature labor, IUGR

Molecular pathways involved in decidualization

- Dramatic changes occur in the gene expression profiles during decidualization
 - Steroid hormones
 - Growth factors
 - molecular and epigenetic mechanisms.
- Endometrial immune system
 - Increased in uNK cells, Treg
- ME
- Epigenetic modifications
 - DNA methylation, histone modification, and nc-RNAs

Int J Mol Sci. 2020 Jun; 21(11): 4092.

Association between deficient decidualization and preeclampsia

- Suboptimal endometrai maturation and uNK cells present in the decidua before preeclampsia development
- Removing the decidua in the immediate postpartum period by uterine curettage accelerates the speed of recovery in patients with PE (1993, 2013)
- Isolated human ESCs from nonpregnant participants with a previous severe PE history
 - Cultured cells fail to be decidualized by analyzing PRL and IGFBP1
 - The deficient decidualization of PE exist 5 years, and the impairment of decidualization might begin before pregnancy

Decidualization Resistance in Severe Preeclampsia

- A transcriptional profile of the decidua in preeclampsia (RNA array)
 - 455 differentially expressed genes (DEGs) in the pathogenesis of PE
 - chorionic villous samples identified 396
 DEGs at 11.5 weeks' gestation in
 patients who developed sPE symptoms 6
 months later
 - >200 dysregulated genes in sPE related to decidual dysfunctionality.
 - The conditioned medium from sPE patient cells did not support CTB invasion
 - Decidualization resistance is associated with shallow CTB invasion

Annexin A2 (ANXA2) as a putative preconception maternal biomarker

- Global transcriptional profiling
 - Alterations in gene expression during in vitro decidualization of hESCs from former patients with sPE.
 - Annexin A2 (ANXA2) expression was lower.

ANXA2

- ANXA2 is abundantly expressed in the placental villous and decidua basalis
 - Initial steps of embryo adhesion to endomove and during implantation
- Its impaired activity could cause fibrinolytic deficiency associated with increased thrombosis, predisposing to PE
 - A putative preconception maternal biomarker for sPE risk prediction

PNAS. 2017;114(40):E8468-E8477. Am J Obstet Gynecol. 2020;222(4):376.e1-376.e17. Am J Obstet Gynecol. 2022 Feb;226(2S):S886-S894.

In vitro and in vivo models of Annexin A2

- ANXA2 was silenced in hESCs
 - Unable to decidualize
- an ANXA2-null mouse model
 - defects in placentation and fetal growth restriction
- A deficiency in ANXA2 is associated with the decidualization resistance observed in preclamptic patients

Decidualization deficiency as a contributor to the pathogenesis of severe preeclampsia

- The pathogenesis of sPF begins before implantation
 - followed by shallow CTB invasion resulting in abnormal spiral remodeling, aberrant placentation, and impaired blood flow to the placenta
 - causing the placenta to release inf an matory factors resulting in systemic endothelial dysfunction.
- Clinical translation of the maternal contribution to the pathogenesis of sPE could provide novel strategies to prevent the disease

Expert Review

ajog.org

Decidualization resistance in the origin of preeclampsia

Microbiota and Preeclampsia

Gut microbiota

Uterine/Placental microbiota

Uterine microbiota on a fertile endometrium

- Uterine microbiota may contribute to healthy endometrium physiology
- Local lymphocytes could sense microbes, thereby initiating a signaling cascade
 - reucosal T cell balance
 - Cytokines
 - Th17 Tres SNK cells
- an effect on the local immune environment

Probiotics may have a protective effect on preeclampsia

 Genome-wide association study (GWAS) from MiBioGen and FinnGen consortiums, the causal association between gut microbiota and PE

Pridobacterium had a protective effect on preeclampsia-eclampsia (On \$ 0.70, 95% CI: 0.64–0.89)

• However, the results of published studies are not consistent

FB 1000 - PE N PE N PE N PE N

FIGURE 5 Varying ratios of Firmicutes and Bacteroidetes (F/B) at the phylum level between the two groups. F/B at the phylum level in the PE group is significantly higher than that in the normal group. PE, preeclampsia; N, the healthy normal group. ***P < 0.001.

Inflammatory cytokines

- PE patients
 - Gut microbiota disturbances
 - Serum proinflammatory factors

Firmicutes and Bacteroidetes (P/R) ratio

Higher serum TNF- α and IL-6

Front Cell Infect Microbiol. 2023 Jan 4;12:1022857.

Gut Dysbiosis Promotes Preeclampsia by Regulating Macrophages and Trophoblasts

Jiajia Jin,* Liaomei Gao,* Xiuli Zou,* Yyn Zhang, Zhijian Zheng, Xinjie Zhang, Jiaxuan Li, Zhenyu Tian, Xiaowei Wang, Junfei Gu, Cheng Zhang, Tiejun Wu, Z'e Wang, Qunye Zhang

Circulation Research. 2022;131:492–506

'Gut-placenta' axis can have an essential role in the etiology of PE

- Gut dysbiosis can provoke pre-eclamptic symptoms and impact the host's blood pressure in women with PE
 - Inoculation of the gut microbiome from pts with PE
 - Trigger higher blood pressure before pregnancy PE-like phenotypes during pregnancy, including wers and hypertension, proteinuria and IUGR
 - Induced imply a imbalances related to T cells and intestinal backies dysfunction
- Gut microbiota screening shows potential for predicting PE onset and provides a new approach for the prevention and treatment of this disease

New horizons for the prevention or treatment of preeclampsia

Expert Review

ajog.org

Pravastatin/ proton-pump inhibitors, metformin, micronutrients, and biologics: new horizons for the prevention or treatment of preeclampsia

Stephen Tong, PhD, FRANZCOG; Tu'uheva ha J. Vai u'u-Lino, PhD; Roxanne Hastie, PhD; Fiona Brownfoot, PhD, FRANZCOG; Catherine Lluver PhD; Natalie Hannan, PhD

- There are a dearth of drugs to treat preeclampsia. Only 1 drug, aspirin, clearly prevents the condition
 - Reduction of preterm PE: 18-67% (Cochrane)

- 2015 2020 systemic search (trials)
- Prevention and treatment
 - Pravastacin
 - Metformin
 - Esomeprazole

Cochrane Database Syst Rev 2019;2019:CD004659.

Pravastatin

- It has pleiotropic actions and can resolve a preeclampsia phenotype in many animal models.
 - beneficial actions on both placental and maternal vascular diseases
- Some early phase clinical trials suggest that it may have therapeutic activity.
 - Several large prevention trials are planted or ongoing
- All of the following change shortly after beginning therapy (6 months)
 - Reversal of endothelial dysfunction
 - Decreased inflammation
 - Thrombogenicity and plaque stabilization

Statins mechanisms of action in preeclampsia

Effects of statins by cell types

Cell types	Mucharusms	Effects
Placental trophoblast cells ⁴¹⁻⁴³	Increased VEC.c 2 3 P.SF Increased rQ-1 Decreased sFIt-1 and sEr/	Decreased inflammation Improved vascular reactivity
Platelets ^{15,26}	Inhibition of platelet adhesion Decreased TXA ₂	Decreased thrombosis
Monocytes and macrophages ^{15,26,31}	Inhibition of T-cell adhesion, activation, and release of proinflammatory cytokines	Decreased inflammation
Endothelial progenitor cells ^{15,26}	Increased mobilization of stem cells	Improved neovascularization and the industrial relialization
Endothelial cells ^{15,39,40}	Increased eNOS Decreased ET-1 Increased VEGF Decreased PAI-1 Decreased ROS	Improved endouse a function Decreased oxidative cress Decreased vascomoristion Decreased inflammation Improved angiogenesis
Vascular smooth muscle cells ⁴⁷	Decreased AT1 receptor expression Decreased ROS	Decreased vasoconstriction

- Trophoblasts
- Monocytes/ macrophages

- Endothelial cells
- Vascular smooth m. cells
- Platelets

Study	Author	Year	Country	Design	Sample size	Dose	Primary outcome	Major findings
Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial	Costantine et al ⁵⁷	2016	Unitr / States	Pilot randomized placebo- contramed trial	20	10 mg	Maternal-fetal safety and pharmacokinetic parameters of pravastatin during pregnancy	Pravastatin group found reduced rates of preeclampsia (0% vs 40%), severe features of preeclampsia, and indicated preterm delivery before 37 wk (10% vs 50%)
Pravastatin improves pregnancy outcomes in obstetrical antiphospholipid syndrome refractory to antithrombotic therapy	Lefkou et al ⁵⁸	2016	Greece	Nonrandomized control trial	21	20 mg	Uteroplacental blood hemodynamics, progression of preeclampsia features, and fetal or neonatal outcomes	Pravastatin group found improved uterine artery Doppler velocimetry, lower blood pressure (130/89 mm Hg vs 160/98 mm Hg), higher birthweight (2390 g vs 900 g), later delivery (36 wk vs 26.5 wk)
Pravastatin for early-onset preeclampsia: a randomized, blinded, placebo-controlled trial	Ahmed et al ⁵⁹	2020	United Kingdom	Proof of principle randomized placebo- controlled trial	56	40 mg	Difference in mean plantia sFlt-1 levels over the first 3 days following random ratio	Pravastatin use was not ssociated with reduction in maternal plasma sFIt-1 levels reminence of 292 pg/ mL (15" of 12" 75—592; P= 0; and of the region of pregnancy, or other pregnancy outcomes
Evaluating the effect of pravastatin in early-onset fetal growth restriction: a nonrandomized and historically controlled pilot study	Mendoza et al ⁶¹	2020	Spain	Pilot nonrandomized controlled trial	38	40 mg	Doppler progression, sFlt-1 and PIGF values, and pregnancy outcomes	Pravastatin group found improvement in anging in profile, greater gestational latency (by 16.5 d), greater birthweight (by 260 g), and decreased rates of preeclampsia (31.6% vs 47.4%)

Clinical studies of pravastatin

- Clinical improvem't
 - Small sample size (20-56)
- Preeclampsia rate
- Uterine artery flow
- Maternal BP
- Plasma sFlt-1 level
- nfant BW
- Later delivery

The role of metformin in Preeclampsia

Metformin

- Readily crosses the reacenta. Safe during pregnancy
- Treatment of prediabetes mellitus, GDM, and PCOS
- From observations in randomized clinical trials: a possible treatment or prevention of preeclampsia (secondary endpoints of a clinical trial evaluating of LGA)

Mechanism

- a reduction in the production of antiangiogenic tectors (sFlt-1 and sEng)
- reduce inflammation and insulin resistance
- modify cellular homeostasis and energy disposition, mediated by rapamycin, a mechanistic target (AMPK-mTOR pathway)
 - This has also been implicated in the pathogenesis of preeclampsia

ORIGINAL ARTICLE

Metformin versus Placebo in Obese Pregnant Women without Diabetes Mellitus

Argyro Syngelaki, Ph.D., Kypros H. Nicolai es, M.D., Jyoti Balani, M.D.,

Table 2. Pregnancy Outcomes, According to Study Grou				
Outcome	Metformin (N = 202)	Placebo (N=198)	Odr' Ra)	P Value
Primary outcome			N	
Median birth-weight z score (IQR)	0.05 (-0.71 to 0.92)	0.17 (-0.62 to 0.89)	-	0.66
Maternal outcomes				
Median weight gain (IQR) — kg	4.6 (1.3 to 7.2)	6.3 (2.9 to 9.2)	_	<0.001
Gestational diabetes mellitus — no./total no. (%)	25/202 (12.4)	22/195 (11.3)	1.11 (0.60 to 2.04)	0.74
Preeclampsia — no./total no. (%)	6/202 (3.0)	22/195 (11.3)	0.24 (0.10 to 0.61)	0.001
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/000 /6 /0	10/105 (6.7)	0.00 (0.10) 0.10)	0.03

Metformin in obese pregnant women without DM

- Reduced maternal weight gain (4.6 vs. 6.3 Kg)
- Incidence of preeclampsia
 3.0% vs. 11.3%)

Metformin

- The incidence of pre-eclampsia increased by insulin-resistant disorders
 - GDM, Type 2 DM, PCOS and obesity
 - Four-fold risk
- Meta-analysis of Metformin or lewering PE risk in insulin-resistant pregnant women (RR=0.68)
- Metformin with and without insulin treatment is associated with a lower incidence of pre-eclampsia than insuling treatment alone in GDM or type 2 DM women
 - probably linked to reduced weight gain
 - In other high-risk pregnancies, metformin does not appear to be beneficial

Proton pump inhibitors

- Preclinical studies suggests a plausible preventive effect
 - Reduction in sFlt1 sFne and proinflammatory cytokine in placental endothelial cells
 - esomeprazole has been shown to resolve the hypertensive phenotype in 2 animal models of preeclampsia (PE)
- Prospective cohort study (2017)
 - lower levels of sFLT-1 and sEng wer: raticed among pregnant PPI users with preeclampsia
- Controversial results from large conort databases
 - A large cohort study from the US using the Traven Health Market Scan database

 → No association of PPIs with a decreased risk of preschampsia or severe preterm PE
 - A Swedish population register-based cohort study found reduced preterm and early preeclampsia risk in women who used PPIs in the third triplester
 - Meta-analysis: a trivial increase in the risk of PE, RR of 1.27 (95% Cir 1.23–1.31)
- Conclusion:
 - There is no evidence supporting that PPI use decreases the risk of PE or preterm PE

Monoclonal antibodies

Classes of therapeutic strategies

Repurposed drugs

- Pravastatin
- Metformin
- Esomeprazole (PPI)

Plasma apheresis

 Small trials have shown it can remove circulating sFlt-1 (transiently)

Monoclonal Abs

- Etenercept (anti-TNFα)
- Eculizumab (complement inhibitor)
 - highly specific
 - Expensive and safety

Generaliencing

- siRNAs targeting sFlt-1 or angioteroince:
- Specific but lack trials

Am J Obstet Gynecol. 2022 Feb;226(2S):S1157-S1170.

Take Home Message

Interventions to reduce Preeclampsia: ACC 2020

- Benefit
 - Delivery
 - Aspirin
 - Calcium *
 - only in nutritional def. countries

- Potential
 - Pravastatin
 - Clinical outcomes (decreased PE rates, prolong delivery
 - Parameters (mBP, UtPI, sFlt-1)
 - Small sample size
 - Metform:n
 - Decreased maternal BW gain
 - Exercise

Prevention of preeclampsia before pregnancy?

- Current Prediction Strategies
 - ACOG and SMFM: 1 high risk or 2 moderate risk factors
 - FMF triple tests: maternal factors + MBP, UtPI, PIGF
 - sFLT1/ PIGF of 38
- New diagnostic or treatment strategies
 - Decidualization resistance
 - Annexin 2 deficiency
 - Probiotics to restore gut /uterine microbiota
- Provide **aspirin** from 1st trimester in women without history of PE (no risk factors)

Thank you focattention!

